
The Shortest Vector Problem in Lattices with
Many Cycles

Mårten Trolin

Department of Numerical Analysis and Computer Science,
Royal Institute of Technology, Stockholm, Sweden

marten@nada.kth.se

Abstract In this paper we investigate how the complexity of the shortest
vector problem in a lattice Λ depends on the cycle structure of the ad-
ditive group Zn/Λ. We give a proof that the shortest vector problem is
NP-complete in the max-norm for n-dimensional lattices Λ where Zn/Λ
has n−1 cycles. We also give experimental data that show that the LLL
algorithm does not perform significantly better on lattices with a high
number of cycles.
Keywords: lattices, LLL algorithm, shortest vector problem

1 Introduction

Lattices were examined already in the middle of the 19th century, at that
time mostly because of their connections to quadratic forms. The interest in
algorithmic aspects of lattice problems started in the beginning of the 1980s.

In 1981, van Emde Boas [16] showed that finding the lattice point closest to a
given point is NP-hard in `r-norm for any r > 0. In the following year, Lenstra,
Lenstra and Lovász [7] published their lattice basis reduction algorithm, which
is guaranteed to find a vector not more than an exponential factor longer than
the shortest vector in polynomial time. This was a great achievement. Schnorr
has improved approximation to a slightly sub-exponential factor [12].

The NP-hardness of the shortest vector problem in Euclidean norm was an
open problem for a long time. It was proven to be NP-hard under random-
ized reductions by Ajtai in 1998 [2]. This result has been improved by several
authors, and the strongest result today by Micciancio [8] is that the shortest
vector problem is NP-hard to approximate within any factor smaller than

√
2

under randomized reductions. On the other hand, Goldreich and Goldwasser [4]
have showed that this NP-hardness result cannot be extended to

√
n unless the

polynomial-time hierarchy collapses.
A lattice can be described either by a basis that spans the lattice, or as

the solutions x of a set of modular equations 〈ai,x〉 = 0 (mod ki). Lattices
can be classified after the cycle structure of the subgroup Zn/Λ. The number of
cycles and the lengths of the cycles in this subgroup corresponds to the minimum
number of equations and the moduli of the equations necessary to describe the
lattice. Our main focus will be to investigate whether there is a difference in the

complexity of computing short vectors between lattices with different number of
cycles.

In 1996, Ajtai [1] published a paper in which it is showed that a random
lattice from a certain set of lattices is at least as hard as a certain shortest
vector problem in the worst case. This result has been improved in [3]. These
n-dimensional lattices have n/c cycles, whereas a random lattice usually has one
cycle. On the other hand, Schnorr and Paz [11] have showed in a worst-case
result that any lattice can be approximated arbitrarily well by a lattice with
one cycle. Schnorr’s and Paz’s result indicates that the lattices with one cycles
are the hardest, whereas Ajtai’s result gives evidence that also lattices with n/c
cycles are hard (although the problem studied by Ajtai is of a different kind
than the common shortest vector problem). This gives rise to the question on
whether or not lattices with more cycles are easier, or whether the number of
cycles is of no importance to the shortest vector problem.

As far as we know, it has never previously been investigated how the cycle
structure affects the complexity of lattice problems. Except for the lattice created
by Ajtai [1], the previously published reductions that we know about [2,8,16]
contain no analysis of the cycle structure of the lattices used. We will show that
even for a large number of cycles the shortest vector problem is hard in the
max-norm. We also give experimental data that indicate that the LLL lattice
basis reduction algorithm does not perform significantly better when applied
on lattices with a high number of cycles. However, we still lack a theoretical
explanation for these results.

2 Definitions

A lattice Λ is the set {
∑n

i=1 λibi | λi ∈ Z} where the vectors bi ∈ Zn are lin-
early independent. The vectors bi’s are called a basis of the lattice, and the
matrix B with the vectors bi’s as its rows is called a basis matrix for Λ. By
Λ (b1,b2, . . . ,bn) we mean the lattice spanned by the basis {b1,b2, . . . ,bn}.
The determinant of a lattice is defined as det(Λ) = |det(B)|. The `k-norm of
a vector v is defined as ‖v‖k =

(∑n
i=1 |vi|k

)1/k. We also define the max-norm,
`∞-norm, as ‖v‖∞ = maxn

i=1 |vi|. We can see that the `2-norm is the Euclidean
norm. In this report we will mainly consider the `2-norm and the `∞-norm.
When we leave out the index we mean the `2-norm.

A vector v ∈ Λ is called a shortest lattice vector if ‖v‖ > 0 and for every
vector u ∈ Λ either ‖u‖ ≥ ‖v‖ or ‖u‖ = 0. Moreover we define the length of a
shortest vector in Λ as λ(Λ) = ‖v‖. We define the length of a basis as the length
of the longest vector in the basis.

In the end of the 19th century, Minkowski [10] proved an upper bound on
the length of the shortest vector in a lattice.

Theorem 1 (Minkowski’s inequality). Let Λ ∈ Zn be an n-dimensional lat-
tice. Then

λ(Λ) ≤ √
γn(det(Λ))1/n

where γn is a constant.

The least constant γn is called Hermite’s constant of rank n, and it has been
proved that γn ≤ n

πe [5]. It is also known that γn ≥ n
2πe .

An alternative way to describe a lattice is by giving a set of modular equation,
that is, equations of the form 〈ai,x〉 = 0 (mod ki), where a1,a2, . . . ,am are
n-dimensional vectors. Any lattice can be written on this form. We will say
that a lattice described by m modular equations with moduli k1, k2, . . . , km has
m cycles of lengths k1, k2, . . . , km, provided that the equations are on as simple
form as possible. More exactly, we demand that the coefficients and the modulus
are relative prime within each equation, and that ki|ki+1, i = 1, 2, . . . ,m− 1. If
we construct a lattice by modular equations such that the moduli do not have
this property, we can always combine the equations to become equations of this
form, and this representation is easy to compute.

The Smith normal form of a matrix [14] gives us the relation that the lengths
of the cycles of a lattice is given by the determinant divisors of the basis matrix:

Theorem 2. Let Λ be a lattice and B its basis matrix. Then the lengths of the
cycles of Λ, k1, k2, . . . , kn are given by

ki =
di

di−1

where di is gcd of all i-minors of B and d0 = 1.

3 Background and previous results

3.1 Complexity of finding short vectors

To the best of our knowledge, the first result of NP-hardness of calculating short
vectors in a lattice was published by van Emde Boas in 1981 [16], where it is
proved NP-hard to calculate the shortest vector in `∞-norm in a general lattice.
The same problem for the `2-norm was long an open problem, until proven NP-
hard under randomized reductions by Ajtai in 1998 [2]. Micciancio [8] improved
this result by showing that it is NP-hard to approximate the shortest vector
within a factor

√
2− ε for any ε > 0 under randomized reductions.

3.2 On the cycle structure of lattices

We will now state a few theorems on the cycle structure. These are probably
well known, and we will therefore omit the proofs. Please note that some of the
cycle lengths ki mentioned in the theorems may be 1.

Theorem 3. Let Λ ⊆ Zn be a lattice with cycle structure Zk1 ×Zk2 ×· · ·×Zkn .
Then the lattice d · Λ has the cycle structure Zd·k1 × Zd·k2 × · · · × Zd·kn .

The next theorem shows that we can always assume that the shortest cycle
of a lattice has length 1.

Theorem 4. Let Λ ⊆ Zn be a lattice with cycle structure Zk1 ×Zk2 ×· · ·×Zkn
,

where k1 ≤ ki, i = 2, . . . , n. Then Λ = k1 · Λ′, where Λ′ is a lattice with cycle
structure Zk2/k1 × Zk3/k1 × · · · × Zkn/k1 .

3.3 Previous results on the cycle structure

Paz and Schnorr [11] have showed the following theorem, which essentially says
that any lattice can be approximated arbitrarily well by a lattice described by a
single modular equation. We will call these lattices cyclic.

Theorem 5. Let Λ ∈ Zn be a lattice. Then for every ε > 0 we can efficiently
construct a linear transformation σΛ,ε : Λ → Zn such that σΛ,ε(Λ) is a lattice
and for some integer k

1. ∀u ∈ Λ : ‖u− σΛ,ε(u)/k‖ ≤ ε‖u‖
2. σΛ,ε(Λ) has one cycle.

This theorem implies that the cyclic lattices, in some sense, are the hardest
ones in the worst case. If we know a way of finding short vectors in cyclic lattices,
this would give us a method of finding short vectors in any lattice.

The average case/worst case connection described by Ajtai [1], the class of
hard lattices consist of lattices with n/c cycles, where n is the dimension and c
some constant.

These first results show that lattices with just one cycle are hard, but the
latter seems to indicate that also lattices with relatively many cycles are hard.
Hence it is natural to investigate the role of the cycle structure in complexity
questions.

4 The LLL algorithm in practice

In this section we will give data about the performance of the LLL algorithm in
practice when applied to lattices with different number of cycles. The intention
is to find out whether or not the result of LLL depends on the cycle structure
of the lattice.

In all experiments, version 4.3 of the NTL library [13] was used.

4.1 Construction of lattice instances

For the experiments, we need to construct lattices in such a way that we have
control over the number of cycles in the lattices. The idea is to create a set of
linear modular equations and compute the null space of this set of equations.

To create an n-dimensional lattice with m cycles we create an m× n matrix
A and set

Λ = {x | Ax ≡ 0 (mod q)} .

The elements of A are given by a shift register generator. In this register we
create a stream of bits using

xi+1 =
l∑

j=1

ajxi−j mod 2 .

The parameter a = (a1, a2, . . . , al) is a constant to be chosen. Solving for the
null space gives us n−m basis vectors. To ensure the basis contains n vectors,
m rows of the matrix qIn are added to the basis.

The dimensions of A determine the cycle structure of the lattice. With m
rows in A, we get a lattice with m cycles of length q. To make it possible to
compare the different lattices with each other, they were created in such a way
that their determinants were equal. By Minkowski’s inequality (theorem 1), this
implies that the length of a shortest vector has the same upper bound. Also
the expected length of the shortest vector is the same. More precisely, given the
dimension n and the determinant d, the lattices were created as

Λm =
{
x | Ax ≡ 0

(
mod p

(
d1/m

))}
where p(x) is the smallest prime equal to or greater than x and A is an m× n
matrix with random entries. Since the determinant is given by the product of the
cycle lengths, we see that all the Λm have approximately the same determinant,
which means that it makes sense to compare the results of the LLL algorithm
on them.

An important factor is how the starting point for LLL is chosen. When we
compute the basis matrix from the null space and add m rows of the form qek

for unit vectors ek, we get a basis where the last rows are much shorter than
the first ones. Micciancio [9] suggests the Hermite Normal Form (HNF) as a
standard representation of a lattice. The HNF can be computed in polynomial
time [15] and we can easily find an upper bound for the coordinates. The basis
derived from the null space is in already in HNF, and for the results presented
use this basis is used as starting point for LLL.

4.2 Result of the LLL algorithm

In the experiments, the LLL algorithm was executed with 75-dimensional lattices
created as explained above as input. The algorithm was executed at least four
times for each number of cycles, and the length of the output vector was noted.
The result is given in figures 1. The number of iterations needed by the algorithm
to finish is given in figure 2.

As we can see in figure 1, the length of the vector produced by the LLL
algorithm does not seem to depend on the cycle structure of the lattice examined.
From figure 2 it seems that the number of iterations needed by the LLL algorithm
to finish in our experiments decreases with the number of cycles.

Since the starting point for a lattice Λ of dimension n with m cycles contains
vectors of length q ≈ m

√
det(Λ), we get a better starting point for a higher

Figure 1. Shortest vector found by LLL in 75-dimensional lattices with constant de-
terminant

Figure 2. Number of iterations as function of the number of cycles for a 75-dimensional
lattice

number of cycles. Experimental data indicate that once the LLL algorithm has
reached a point where the length of the shortest vector is that of the starting
point for lattice with a higher number of cycles, the progress of the algorithm is
similar for both lattices.

5 Complexity of computing short vectors in a lattice
with many cycles

We will now present an NP-completeness proof for lattices with a maximum
number of cycles. We will prove that even if an n-dimensional lattice has n− 1
cycles the problem of deciding whether there is a vector shorter than a given
length in `∞-norm is NP-complete.

The problem that we will discuss is the following:

Definition 1. SVML∞ is the problem of finding a short vector in a lattice with
maximal number of cycles. Let Λ ⊆ Zn be a lattice which has n − 1 cycles of
equal length q, and let k ∈ Z. Then (Λ, k) is a yes-instance if there exists v ∈ Λ
such that ‖v‖∞ ≤ k, and a no-instance otherwise.

We will prove the following theorem

Theorem 6. SVML∞ is NP-complete.

Proof. We first note that SVML∞ is in NP. Given a vector v we can in polyno-
mial time verify that ‖v‖∞ ≤ k and that v ∈ Λ by solving the system of linear
equations Bx = v where B is a basis matrix of Λ and check that x is integral.
This can be done in polynomial time.

Before we continue the proof, we introduce some notation. For any a ∈ R,
define

{a} := |a mod Z| = min
k∈Z

(|a− k|) .

Informally, {a} is the distance from a to the closest integer. We also introduce
a related notation for vectors. For any v ∈ Rn, define

{{v}} := ‖v mod Zn‖∞ =
n

max
i=1

({vi}) .

{{v}} can be seen as the distance between v and the closest integral vector,
given that we by distance mean the max-norm.

We prove that SVML∞ is NP-hard by reducing from good simultaneous
Diophantine approximation in `∞-norm, GDA∞, which was proven NP-hard
by Lagarias [6]. GDA∞ is the following problem. Given a vector α ∈ Qn and
integers N and s decide whether there exists an integer Q such that

1 ≤ Q ≤ N

and
{{Qα}} ≤ 1/s .

In other words, given a vector of rational numbers, we want to find good approx-
imations to the components of this vector using rationals with a small common
denominator.

We note that we can always assume that α is of the form

α =
(a1

b
,
a2

b
, . . . ,

an

b

)
.

Should α not be of this form, we can always rewrite all its components using the
least common denominator.

We start by proving that a revision of GDA∞, rGDA∞, is NP-hard.

Definition 2. rGDA∞ is the following problem: Given integers s, q and N and
a vector β = (k1, k2, . . . , kn)/B ∈ Qn where B = N2s(s − 2)q, decide whether
there exists an integer Q such that

1 ≤ Q ≤ N2(s− 2)q +
N

2

and
{{Qβ}} ≤ 1

s
+

1
2Ns(s− 2)q

.

Lemma 1. rGDA∞ is NP-hard.

Proof. We reduce GDA∞ to rGDA∞. Let α, N and s be an instance of GDA∞.
Assume b is the common denominator of α. Let c be the least integer such that
1/s < c/b. Now choose q as the least integer for which

1
s

+
1

Ns(s− 2)q
<

c

b

and
(s− 2)q > N

and let B = N2s(s−2)q. In other words, we choose q so that there is no multiple
of 1/b in the interval [1/s, 1/s + N/B).

Let the vector
β′ = (k1, k2, . . . , kn)/B

with integral components k1, k2, . . . , kn be such that ‖α − β′‖∞ is minimized.
This can be done in polynomial time using ordinary division. It is easy to see
that ‖α− β′‖∞ ≤ 1/(2B).

We now define a new vector
β =(

β′,
1

Ns
,

1
Ns(s− 2)

, . . . ,
1

Ns(s− 2)q
,

1
N2s

,
1

N2s(s− 2)
, . . . ,

1
N2s(s− 2)q

)
,

that is, we append some new elements to the vector β′.

We see that β, N , q and s form an instance of rGDA∞. Since q is logarithmic
in N , β is not more than polynomially larger than α. Also the bit size of the
common denominator does not grow more than polynomially.

We want to prove that Q is a solution of this rGDA∞ problem if and only
if it is a solution of this original GDA∞ problem.

Let Q be a solution of the rGDA∞ instance. We want to prove that Q also
is a solution of the original GDA problem.

We first prove that Q ≤ N . We know that 1/(Ns) is a component of β. Since
Q is a solution, {

Q
1

Ns

}
≤ 1

s
+

1
2s(s− 2)q

.

This implies that either

Q
1

Ns
≤ 1

s
+

1
2s(s− 2)q

or

Q
1

Ns
≥ 1−

(
1
s

+
1

2s(s− 2)q

)
which can be rewritten as

Q ≤ N +
N

2(s− 2)q

or
Q ≥ Ns−N − N

2(s− 2)q
.

Since Q is integral, these two conditions imply that

Q ≤ N

or
Q ≥ N(s− 1) .

We also have that 1
Ns(s−2) is a component of β. The corresponding calculations

for this component show that Q ≤ N(s−2) < N(s−1) or Q ≥ N(s−2)(s−1). We
can use the same reasoning for the components βn+1 up to βn+q+1 (remember
that βn+q+1 = 1/ (Ns(s− 2)q)), which shows that either

Q ≤ N

or
Q ≥ N(s− 2)q(s− 1)− N

2
.

We do the same thing with βn+q+2 = 1/(N2s), which gives us that either

Q ≤ N2

or
Q > N2(s− 2) .

Since (s − 2)q > N this implies together with the previous results that Q >
N2(s − 2) unless Q ≤ N . Going through the remaining components we finally
get that

Q ≤ N

or
Q ≥ N2(s− 2)q(s− 1)− N

2
.

Since we in the definition of the problem stated that Q ≤ N2(s− 2)q +N/2, the
only remaining possibility is that Q ≤ N .

We now prove that {{Qα}} ≤ 1/s. We observe that {{Qα}} = k/b for some
integer k (remember that b is the common denominator of α). We know that
{Qβ′} ≤ {Qβ} ≤ 1/s + 1/(2B). Since the distance between α and β′ is at most
1/(2B) we can conclude that

{{Qα}} ≤ {{Qβ′}}+ Q 1
2B

≤ 1
s + 1

2Ns(s−2)q + 1
2Ns(s−2)q

= 1
s + 1

Ns(s−2)q

.

But, as we just stated, the approximation error in α is always a multiple of 1/b
and since we have chosen q such that 1/s + 1/(Ns(s− 2)q) does not pass a 1/b
boundary, this must indeed be

{{Qα}} ≤ 1
s

.

This concludes the proof that Q is a solution of the GDA∞ instance if it is a
solution of the rGDA∞ instance.

Now assume that Q is a solution of the GDA∞ instance. This means that
{Qα} ≤ 1/s and Q ≤ N . We first note that {Qβi} ≤ Qβi ≤ Nβi ≤ 1/s for
i = n + 1, . . . , n + 2q + 2, i.e., the appended components. This means that we
only need to consider β′. We know that ‖α− β′‖∞ ≤ 1/(2B), which means that

{{Qβ′}} ≤ {{Qα}}+ Q
1

2B
≤ 1

s
+

1
2Ns(s− 2)q

and we can conclude that Q is a solution of the rGDA∞ problem.

This proves that the reduction is correct. We now turn to the proof of the
NP-hardness of SVML∞. We do this by reducing from rGDA∞. Let β, N and
s be an instance of rGDA∞, with β =

(
k1
B , k2

B , . . . , kn

B

)
. We create the lattice

with the following (n + 1)× (n + 1) matrix as its basis matrix (the basis vectors
are the rows of the matrix)

A =


1/B k1/B k2/B . . . kn/B
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

If we multiply this lattice by B we get an (n + 1)-dimensional integral lattice.
According to theorem 2, the lattice B ·A has n cycles of length B. This means
that B ·A and B/s + B/(2Ns(s− 2)q) is an instance of SVML∞.

We now want to prove that this SVML∞ instance is a yes instance if and
only if the original rGDA∞ is a yes instance.

Assume that the SVML∞ instance is a yes instance, i.e., there is a Q such
that

max
{

Q
1
B

, {{Qβ}}
}
≤ 1

s
+

1
2Ns(s− 2)q

which implies that

{{Qβ}} ≤ 1
s

+
1

2Ns(s− 2)q

and
Q ≤ N2(s− 2)q +

N

2
so Q is a solution of the rGDA∞ instance.

Assume that the rGDA∞ instance is a yes instance. Then there is a Q ≤
N2(s− 2)q + N/2 such that

{{Qβ}} ≤ 1
s

+
1

2Ns(s− 2)q
.

We can calculate
Q

1
B
≤ 1

s
+

1
2Ns(s− 2)q

which implies that

max
{

Q
1
B

, {{Qβ}}
}
≤ 1

s
+

1
2Ns(s− 2)q

,

i.e., the SVML∞ instance is a yes instance.
This concludes the proof that SVML∞ is NP-complete.

Acknowledgements

I would like to thank Johan Håstad for valueable feedback and ideas during the
preparation of this paper. I would also like to thank the anonymous referees for
pointing out mistakes and possible improvements.

References

1. M. Ajtai. Generating Hard Instances of Lattice Problems. Proc. 28th ACM Sym-
posium on Theory of Computing, pages 99–108, 1996.

2. M. Ajtai. The shortest vector problem in `2 is NP-hard for randomized reductions.
Proc. 30th ACM Symposium on the Theory of Computing, pages 10–19, 1998.

3. J-Y. Cai and A. Nerurkar. An Improved Worst-Case to Average-Case Connection
for Lattice Problems. Proc. 38th IEEE Symposium on Foundations of Computer
Science, pages 468–477, 1997.

4. O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice
problems. Journal of Computer and System Sciences, Academic Press, 60(3):540–
563, 2000. Can be obtained from http://www.eccc.uni-trier.de/eccc.

5. Kabatjanskii and Levenshtein. Bounds for Packings on a Sphere and in Space.
Problems of Information Transmission 14, 1:1–17, 1978.

6. J.C. Lagarias. The Computational Complexity of Simultanous Diophantine Ap-
proximation Problems. SIAM Journal of Computing, 14:196–209, 1985.

7. A.K. Lenstra, H.W. Lenstra and L. Lovász. Factoring Polynomials with Rational
Coefficients. Mathematische Annalen 261:515–534, 1982.

8. D. Micciancio. The Shortest Vector in a Lattice is Hard to Approximate within
Some Constant. Proc. 39th IEEE Symposium on Foundations of Computer Science,
1998, 92–98.

9. D. Micciancio. Lattice Based Cryptography: A Global Improvement. Technical
report, Theory of Cryptography Library, 1999. Report 99-05. Can be obtained
from http://eprint.iacr.org.

10. H. Minkowski. Über die positiven quadratischen Formen und über kettenbruchähn-
liche Algorithmen. Crelles Journal für die Reine und Angewandte Mathematik,
107:278–297, 1891.

11. A. Paz and C.P. Schnorr. Approximating Integer Lattices by Lattices with Cyclic
Lattice Groups. Automata, languages and programming (Karlsruhe), 1987, 386–
393.

12. C.P. Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms.
Theoretical Computer Science, 53:201–224, 1987.

13. V. Shoup. NTL: A Library for doing Number Theory. Can be obtained from
http://www.shoup.net.

14. H.J.S. Smith. On Systems of Linear Indeterminate Equations and Congruences.
Philosophical Transactions of the Royal Society of London, 151:293–326, 1861.

15. A. Storjohann and G. Labahn. Asymptotically Fast Computation of Hermite Nor-
mal Forms of Integer Matrices. ISAAC ’96, 1996, 259–266.

16. P. van Emde Boas. Another NP-complete partition problem and the copm-
lexity of computing short vectors in lattices. Technical Report 81-04. Math-
ematics Department, University of Amsterdam, 1981. Can be obtained from
http://turing.wins.uva.nl/˜peter.

